Chapter 8 Similarity

8.1 Similar Polygons

Corresponding Parts of Similar Polygons

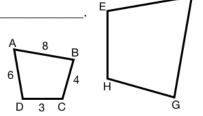
Corresponding Angles

$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$, $\angle C \cong \angle F$

Ratios of corresponding side lengths

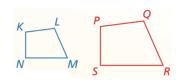
$$\frac{DE}{AB} = \frac{EF}{BC} = \frac{FD}{CA} = k = \text{scale factor}$$

$$\frac{kc}{c} = \frac{ka}{a} = \frac{kb}{b} = k$$


Using Similarity Statements

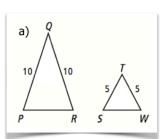
In the figures below, _____

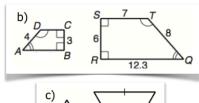
(a) What is the _____?

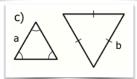

(b) List ___

(c) List _____

Perimeters of Similar Polygons Theorem

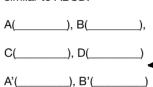

If KLMN ~ PQRS, then

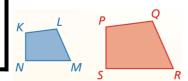



scale factor

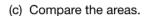
Using Similarity Statements

In the figures below, determine which pairs are similar.



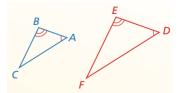

Using Similarity Statements

Given quadrilateral ABCD and segment A'B'. Find C' and D' so A'B'C'D' is similar to ABCD.


Areas of Similar Polygons Theorem

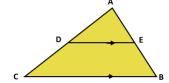
If KLMN ~ PQRS, then
$$\frac{\text{Area of } PQRS}{\text{Area of } KLMN} = \left(\frac{PQ}{KL}\right)^2 = \left(\frac{QR}{LM}\right)^2 = \left(\frac{RS}{MN}\right)^2 = \left(\frac{SP}{NK}\right)^2$$

Using Similarity Statements

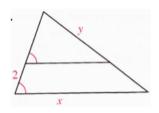

- (a) Double the side lengths. Is the new figure similar?
- (b) Compare the perimeter of the original and new figure.

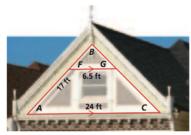
8.2 Proving Triangle Similarity by AA~

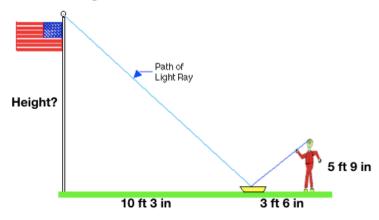
Angle-Angle Similarity (AA~) Theorem


Using AA~

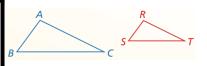
A) Are these triangles similar?



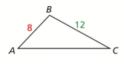

B) Are _____ and ___ similar? Why or why not?

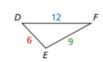

A) Calculate x and y.

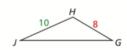
B) Calculate the distance AB.



How are these triangles similar?

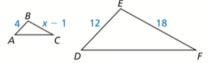

8.3 Proving Triangle Similarity by SSS and SAS

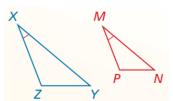

Side-Side-Side Similarity (SSS~) Theorem



If
$$\frac{AB}{RS} = \frac{BC}{ST} = \frac{CA}{TR}$$
, then $\triangle ABC \sim \triangle RST$.

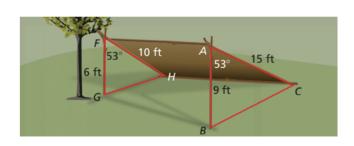
a) Which pairs of triangles are similar?



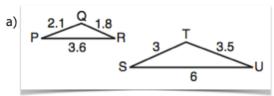


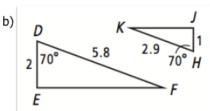
b) What value for x makes these triangles similar?

ΔABC ~ ΔDEF

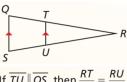


Side-Angle-Side Similarity (SAS~) Theorem

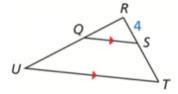


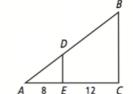

If
$$\angle X \cong \angle M$$
 and $\frac{ZX}{PM} = \frac{XY}{MN}$, then $\triangle XYZ \sim \triangle MNP$.

You built a lean-to shelter starting from a tree branch, as shown. Are the left and right ends similar?

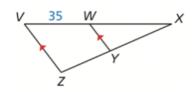

Verify the polygons are similar. Name the theorem, find the similarity ratio and similarity statement.

8.4 Proportionality Theorems

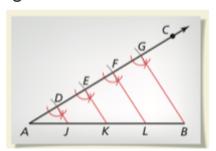

Triangle **Proportionality Theorem**


If $\overline{TU} \parallel \overline{QS}$, then $\frac{RT}{TQ} = \frac{RU}{US}$.

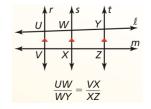
Converse of the Triangle Proportionality Theorem If $\frac{RT}{TQ} = \frac{RU}{US}$ then $\overline{TU} \parallel \overline{QS}$.


a) What is the length of QR?

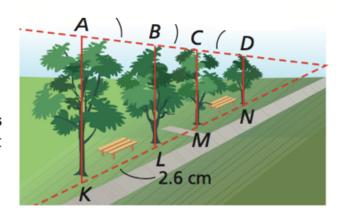
b) Verify that $\overline{DE} \parallel \overline{BC}$.

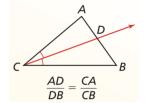


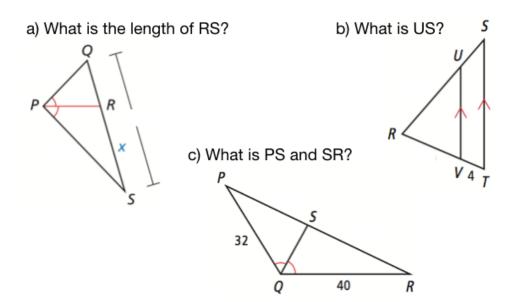
c) What is the length of YZ?



Triangle Proportionality


Find point L on AB in which AL is 3 times longer than LB.


Α В Three Parallel Lines
Theorem



An artist used perspective to help her sketch a row of parallel trees. She then checked the drawing by measuring the distances between the trees. What is LN?

Triangle Angle Bisector Theorem

